B'na . LIOE.YI

AD-A218 926

TOWARDS THE KNOWLEDGE LEVEL IN
SOAR: THE ROLE OF THE ARCHITECTUR
' IN THE USE OF KNOWLEDGE

Technical Report AP - 65
P.S. ROSENBLOOM, A. NEWELL, & J.E. LAIRD

University of Southern California,
Carnegie Mellon University, &
University of Michigan

Anvmiet 7 1QRQ

The Artificial Intelligence
and Psychology Project

. DTIG-
™ ELECTE gy
Departments of > MAR121330% N
Computer Science and Psychology "] R
Carnegie Mellon University =~ E

cam e

Learning Research and Development Center
University of Pittsburgh

GO &3’ 12 02{

Approved for public release; dnstnbunon unlimited.

na AN » -, fakido)

TOWARDS THE KNOWLEDGE LEVEL IN
SOAR: THE ROLE OF THE ARCHITECTURE
IN THE USE OF KNOWLEDGE

Technical Report AIP - 65
P.S. ROSENBLOOM, A. NEWELL, & J.E. LAIRD

University of Southern California,
Carnegie Mellon University, &
University of Michigan

August 7, 1989

This research was sponsored by the Defense Advanced Reaearch Projects Agency (DOD) under contract
numbers N00039-86C-0033 (via subcontract tfrom the Knowledge Systems Laboratory, Stanford
University) and F33615-87-C-1499 (ARPA Order No. 4976, monitored by the Air Force Avicnics
Laboratory), by the National Aeronautics and Space Administration under cooperative agreement
numbers NCC 2-538 and NCC 2-517, and the Office of Naval Research under contract numbers
N00014-86-K-0678 (Information Sciences Division) and N00014-88-K-0554 (Computer Science Division).
The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either exp-essed or implied, of the Defense Advanced
Research Projects Agency, the National Aeronautics and Space Administration, the Office of Naval
Research or the US Government.

Unclassified -

N THIS PA
S — .
REPOR DOCUMENTATION PAGE
” 1b. RES‘TRﬁVE MARK'NGS
1a. REPORT § IFICATION
s ifuniass ied
To- SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release;
Distribution unlimited

2b. DECLASSIAICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
AIP - 65 Same as Performing Organization
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL [7a. NAME OF MONITORING ORGANIZATION
. . (If applicabie) Personnel and Training Research
Carnegie Mellon University Office of Naval Research (Code 1142PT)
6¢c. ADORESS (City, State, and ZIP Code) 7b. ADORESS (City, State, and ZIP Code)
Department of Psychology 800 N. Quincy Stgzei 0
Pittsburgh, Pennsylvania 15213 Arlington, VA 217-5000
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable) NOOO14-88-K-0086
ame as Monitoring Organization
8c. ACDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO
N/A N/A N/A N/A

. e
11. TITLE (include Security Classification) Towards the knowledge level in Soar: The role of the

- architecture in the use of knowledge

12. PERSONAL AUTHOR(S)

-Paul S. Rosenbloom, Allen Newell, and John E. Laird

13a. TYPE OF 13b. TIME COVE 14. DATE OF REPORT (Year, Month Day) 5. PAGE COUNT
Technical FROM eptfg 1o 91Septl august 7, 71
ﬁ —
16. SUPPLEMENTARY NOTATION To appear in VanLehn, K. (Ed.), Architctures for intelligence. \
Hillsdale, NJ: Erlbaum.
17 COSATI CODES 18 SUBLECT TERMS (Continue on reverse if necessary and identify by biock number)
FIELD GROUP SUB-GROUP procedural knowledge

episodic knowledge
declarative knowledge

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

SEE REVERSE SIDE

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
O uncLassiFieounumiTED XEX SAME AS RPT CJ oric USERS
s e ——
22a. NAME OF RESPONS‘.'LE INDIVIOUAL 22b TE EPHONE (Inc/ude Area Code) | 22¢. OFFICE SYMBOL
Susan Chipman (202, 696-4322 142 PT
e
.00 FORM 1‘73, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete.
Unclassified

ABSTRACT

Soar has been described as an architecture for a system that is to be capable of general
intelligence. One way to specify what this migh! mean is to define general intelligence as the
ability to approximate an ideal knowledge level system across a sufficiently broad set of goals
and knowlecne. In this chapter we use this definiion as the basis for evaluating the scope of this
chapter, so we focus more narrowly on how the Soar architecture supports and constrains the
representation, storage, retrieval, use and acquisition of three pervasive forms of knowledge:
procedural, episodic, and declarative knowledge. The analysis reveals that Soar adequately
supports procedual knowledge - to some extent it was designed for this - but that there are still
significant questions about episodic and declarative knowledge. These questions arise primarily
because of consequencas of the principle sou:ce on constraint in Soar, the fact that all learning
occurs via chunking. New results are also presented on the acquisition of declarative knowledge.

v B
\ nictrilatien/

I
! Availenitity Codes
i o and/or

nict 1 Smecial
Dic R

‘ }V*D |l
A0

Towards the Knowledge Level in Soar:
The Role of the Architecture in the Use of Knowledge

Paul 5. Rosenbloom
Information Sciences Institute
University of Southern California

Allen Newell
Department of Computer Science
C'arnegie-Mellon University

John E. Laird
Department of Electrical Engineering and Computer Science
University of Michigan

August 7, 1989

Abstract

Soar has been described as an architecture for a system that is to be capable of general
intelligence. One way to specify what this might mean is to define general intelligence as
the ability to approximate an ideal knowledge level system across a sufficiently broad set
of goals and knowledge. In this chapter we use this definition as the basis for evaluating
the degree to which Soar achieves general intelligence. A complete evaluaiion is beyond
the scope of this chapter, so we focus more narrowly on how :he Soar architecture
supports and constrains the representation, storage, retrieval. use and acquisition of three
pervasive forms of knowledge: procedural, episodic, and declarative knowledge. The
analysis reveals that Soar adequately supports procedural knowledge — to some extent it
was designed for this — but that there are still significant questions abnut episodic and
declarative knowledge. These questions arise primarily because of consequences of the
principle source of constraint in Soar. the fact that all learning occurs via chunking. New
resuits are also presented on the acquisition of declarative knowledge. (k—g)

* Toward= the Knowledge Level in Noar

[V T

(S]]

. Soar
. Architectural Support for Knowledge
. Procedural Knowledge
3.1. Performable Actions

3.2

3.3. Action Performance

3.4.

1.1.
4.2,
1.3.
4.4.
1.5.
1.6.

3.1
3.2,
3.3.
3.4
2.5.

5.6.

Table of Contents

Action Control

Summary

. Episodic Knowledge

Representation
Storage
Retrieval

Use
Acquisition
Summary

. Declarative Knowledge

Representation
Stcrage
Retrieval

Use
Acquisition
Summary

. Conclusions

Paze

bk N I SR

D P YL YD e e e LW W W I LD b 1E 1Y — — e
B Em MO d XN e LS EIAIT T

4

Towards the Knowledge Level in Soar . Page 1

To@da the Knowledge Level in Soar: The Role of the Architect
the Use of Knowledge!

Soar has been described as an architecture for a svstem that is to be
capable of general intelligence (Laird. Newell. & Rosenbloom. 1987). One
way to specify what this might mean is to enumerate the set of
capabilities that. based on the field's cumulative experience, appear to be
required for general intelligence: to be able to work on the full range of
tasks, to be able to use the full range of problem-solving methods and
varieties of knowledge, to be able to interact with the outside world in real
time. and to learn about the world and the system's own performance.
Progress can then be evaluated by determining the degree to which the
architecture supports such capabilities. For Soar, such an evaluation
reveals significant progress in the areas of tasks (Laird, Newell., &
Rosenbloom, 1987). problem-solving methods (Laird & Newell. 1983,
Laird, 1983) and learning (Steier et al, 1987); some progress in the area of
outside interaction (Laird, Yager, Tuck. & Hucka. 1989): and an unclear

situation in the area of knowledge.

1'l’his research was sponsored by the Defense Advanced Research Projects Agency
(DOD) under contract numbers N0O0039-86C-0033 {via subcontract from the Knowledge
Systems Laboratory, Stanford University) and F33615-87-C-1499 {ARPA Order No. 4976,
monitored by the Air Force Avionics Laboratory), by the National Aeronautics and Space
Administration under cooperative agreement numbers NCC 2-538 and NCC 2-517, and
the Office of Naval Research under contract numbers N00014-86-K-0878 (Information
Sciences Division) and N00014-88-K-0554 (Computer Science Division). The views and
conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency, the National Aeronautics and Space Administration.
the Office of Naval Research or the US Governinent.

Towards the Knowledge Level in soar Page 2

The problem with such an approach o specifving (and evaluating
progress towards) general intelligence is the lack of theoretical
justifications for the <et of capabilities included. Without such
justifications it is unclear. for example. whether some new form of
learning that is developed is necessary for general intelligence. or just ~n
interesting oddity. In addition, whole categories of critical capabilities
may be unknowingly omitted. What is needed is a more fundamental
definition of general intelligence from which the required capabilities can

be derived (or at least justified).

One idea that shows promise towards providing such a definition is the
knowledge level (Newell, 1981). The idea of the knowledge level is based
on earlier developments in the area of computer systems levels (Bell &
Newell, 1971). A computer systems level consists of a medium that is
processed. components that provide primitive processing. laws of
composition that permit components to be assembled into systems. and
laws of behavior that determine how svstem behavior depends on the
component behavior and the structure of the system. Existing levels (and
their media) include the device level (electrons), the circuit level (current),
the logic level (bits), the register-transfer level (bit-vectors), and the
program (or symbol) level (symbols. expressions). In terms of these levels.
an architecture is a register-transfer level system that defines a symbol

level.

The knowledge level is a distinct computer systems level that lies

Tywards the Knowledge Level in Soar Page 3

imMately above the symbol level. The medium processed at the
knowledge level is knowledge. An agent — a svstem at the know ledge
level — consists of a physical body that can interact with an environment.
knowledge. and a set of goals. The law of behavior is the Priveciple of
Rationality: "If an agent has knowledge that one of its actions wil! lead to
one of its goals. then the agent will select that action." (Newell, 1981. p.
8) Once knowledge is acquired. it is available for all future goals. There
are no capacity limitations on the amount of knowledge that can be
available or on the agent's ability to bring it to bear in the selection of
actions that achieve its goals. An essential feature of the knowledge level
is that the agent's behavior is determined by the content of its knowledge.
not by any aspects of its internal structure. It abstracts away from the
processing and representation of the lower levels. This lack of significant

internal structure implies that there are no laws of composition at the

knowledge level.

The knowledge level provides a straightforward, though not
uncontroversial. definition for intelligence. A system is intelligent to the
degree that it approximates a knowledge-level svstem (Newell, 1989).
Perfect intelligence requires a complete lack of internal resource
limitations. However, this ideal is unreachable in physically realizable
systems that are required to make decisions using bounded resources over
a sufficiently wide range of goals using large bodies of knowledge. Such

systems can at best only approximate a knowledge-level system. and thus

Towards the Knowledge Level in Soar Page 4

achieve some level of intelligence that is less than perfect. The ideal of

perfect intelligence also does not entaii :he generality of that intelligence.
A system’s behavior is characterized both by its inteiligence and by its
generality. Generality for a knowledge-level svstem is the range of
interactions that it can have with the environment. the range of goal- it
can have, and the range of knowledge that it can acquire and use.
Intelligence is how well the system applies its knowledge to the tasks

within its scope.

Assuming this knowledge-level definition of general intelligen-e. the key
question for the architecture is how it supports the knowledge level for a
sufficiently broad set of goals and knowledge. How does it approximate
rationality with bounded resources? How does it support the acquisition
and use of knowledge? A complete answer to the key question requires
answering a number of such subquestions. In (Newell. 1989), a beginning
was made at answering the first subquestion. In this chapter we provide
the beginnings of an answer to the second subquestion. We examine how
the Soar architecture supports and constrains the representation, storage.

retrieval, use and acquisition of three pervasive forms of knowledge.

The first form of knowledge to be examined is procedural nowledge.
Procedural knowledge is knowledge about the agent’'s actions. [t includes
knowledge about which actions can be performed. which actions should be
performed when (control knowledge), and how actions are performed. The

second form of knowledge to be examined is episodic knowledge. Episodic

Towards rhe Knowledge Level in oar Page 35

knoviledge is knowledge about what objects. actions. und action sequences
have occurred in the agent’s past. It allows answering such questions s
"Did this object. action. or action ~equence .ceur (in this context 1’ and
"What objects. actions. or action ~equences occurred (in this context)?"
The third and final form of knowledge to be examined is declarative
knowledge. Declarative knowledge is knowledge about what is true in the
world. These final two forms of knowledge have often been referred to
collectively as propositional knowledge. with the term "semantic

knowledge" used in place of declarative knowledge (Tulving, 1983).

The plan for ‘his chapter is to start with a brief conventional description
of the Soar architecture (Section 1). followed by its redescription in terms
of the direct support it provides for knowledge (~ection 2}. The core of
tie chapter then consists of in-depth analyses of how procedural. episodie.
and declarative knowledge are represented. stored. retrieved. used. and
acquired in Soar (Sections 3-3). Special emphasiv is placed on how the
architecture supports and constrains these abilities. The chaprer is
concluded with a summary of kev points and in.portant directions for

future work (Section 6).

9
1. Soar*
Research on Soar to date has focused on the development (and

application) of an architecture for intelligence that is based on formulating

2This section describes Soar 4.5 (Laird et al. 1989). which is the basis for the analyses
in this chapter

Towards the Knowledge Level in ~nar Pace &

all symbolic joal-oriented hehavicr as search in problem spaces. The
problem space determines the sei of states and operators that can be used
during the processing to attain a goal. The states represent situations.
There is an initial state. representing the initial situation. and u <et of
desired states that represent the goal. An operator, when applied to a
state in the problem space. vields another state in the problem space. The
goal is achieved when a desired state is reached as the result of a sequence
of operator apnlications starting from the initial state. Each goal defines
a problem-solving context ("context" for short) that contains. in addition

to a goal. roles for a problem space. u state. and an operator.

Problem solving for a goal is driven by decisions that result in the
selection of problem spaces. states, and operators for the appropriate roles
in the context. Decisions are made by the retrieval and integration of
preferences — special architecturally interpretable elements that lescribe
the acceptability, desirability, and necessity of selecting particular problem
spaces, states. and operators. The context in which o preference is
a, plicable is specified by its goal. problem-space. state. and operator
a‘tributes. When present. they specify the objects that must be already
selected in the context for the preference to be valid. For example, the
following is a desirability preference stating that operator o/ is at least as
good as any other operator — that is. it is best — for state </. problem

space pl. and goal ¢1.

(preference ol "role operator “valie sest
"goal g1 “problem-space p1 “state s1)

Towards the Knowledge Level in Soar Page 7

There are two types of acceptability preferences — acceptable and reject
— to rule ax operator into and out of consideration for selection. \ reject
preference overrides an acceptable preference. There are five tvpes of
desirability preferences — worst, worse. indifferent. better. and best — to
determine the relative desirability of considered objects. Worst and best
are unary preferences. Worse and better are binary preferences.
[ndifferent can be binary or uaaryv. in which case the object is indifferent
to all other competing objects with indifferent preferences. There are two
types of necessity preferences — require and prohibit — for asserting that
an object must or must not be selected for a goal to be achieved. Details

on the semantics of preferences can be forad in (Laird, Newell. &

Rosenbloom. 1987).

All long-term knowledge is stored in a recognition-hased memory — a
production system. Each production is a cued-retrieval unit that retrieves
the contents of its actions when the pattern in its conditions is successfully
matched. By sharing variables between conditions and zctions.
preductions can retrieve information that is a function of what was
matched. By having variables in actions that are not in conditions. new

objects can be generated/retrieved.

Transient process state is contained in a working memory. This includes
information retrieved from long-term memory. results of decisions made
by the architecture, information curren.ly perceived from the external

environment, and motor commands. [t should be clear that this process

Towards the Knowiedge Level in Soar

j
state is much more than just a single state in a problem space. The
process state is the entire transient state of the svstem. which includes as
components. states in problem spaces. and in fact whole problem-solving
contexts. It provides the cues for retrieving additional information from

long-term memory.

Structurally, working memory consists of a set of objects and preferences
about objects. Each object in working rﬁemory has a class name, a unique
identifier. and a set of attributes with associated values. which may be
constants or identifiers (allowing a graph structure of objects). For

example, a particular box could be represented by the following object.
(box b1 “name box1 “height 10 “width 4 “depth 2)

The class is "box". the identifier is "5I". the name of the box is "box1",

and the box has a height of 10 a width of 4 and a depth of 2.

For each problem-solving decision. the contents of working memory is
elaborated by parallel access of long-term memory to exhaustion. All
productions that match the current working memory are fired in parallel,
and this repeats until no productions match. This elaboration process
retrieves into working memory new objects. new information about

existing objects, and new preferences. When quiescence is reached — that

is, when no more productions can fire — an ar(' ™ ‘ural decision
procedure interprets the preferences in working mer . ng to their
fixed semantics. If the preferences uniquely specify hject to be

selected for a role in a context, such as selecting the current operator for a

Towards the Knowledge Level in Soar

state, tien a decision can be made. and the specified object becomes the
current value of the role. The whole process. an elaboration phase

followed by a decision. then repeats.

If the decision procedure is ever unable to make a selection — because
the preferences in working memory are either incomplete or inconsistent —
an impasse occurs in problem solving because the system does not know
how to proceed. \When an impasse occurs. a subgoal with an associated
problem-solving context is automatically generated for the task of
resolving the impasse. The impasses. and thus their subgoals, vary from
problems of selection (of problem spaces. states, and operators) to
problems of generation (e.g., operator application). Given a subgoal, Soar
can bring its full problem-solving capability and knowledge to bear on
resolving the impasse that caused the subgoal. For example. if an
operator-tie impasse occurs because multiple operators are competing for
selection with insufficiently distinguishing preferences. then a subgoal is
created in which Soar can (among other things) execute operators to
evaluate the competing alternatives. Productions can then create

preferences based on these evaluations. allowing the decision to be made.

When impasses occur within impasses — if, for example. there is
insufficient knowledge about how to evaluate a competing alternative —
then subgoals occur within subgoals. and a goal hierarchy results (which
therefore defines a hierarchy of contexts). The top prcblem space consists

of task operators: such as. to recognize an item. The subgoals are

‘Towards the Knowledge Level in ~nar Page 10

generated as the result of impasses in problem solving. \ <ubgoal

terminates when the impasse is resolved.

Soar learns by acquiring new productions that summarize the processing
that leads to the results of subgoals. a process called chunking. The
actions of the new productions are based on the results of the subgoal.
The conditions are based 6n those working memory elements in supergoals
that were relevant to the determination of the results. Relevance is
determined by using the traces of the productions that fired during the
subgoal. Starting from the production trace that generated the subgoal’s
result. those production traces that generated the working-memory
elements in the conditions of the trace are found, and then the traces that
generated their condition elements are found. and so on until elements are
reached that are in supergoals. Productions that only generate desirability
preferences do not participate in this backtracing process — desirability
preferences only affect the efficiency with which a goal is achieved. and

not the correctness of the goal's results.

Soar’s perceptual-motor behavior is driven by a set of asynchronous
modules, and mediated through the state in the top context. Each
perceptual and motor modality (module) has its own state attribute to
which perceptual information is added and/or motor commands are taken.
New sensory information arrives in working memory whenever it is
available. and motor commands are sent to the appropriate motor

modules as soon as they are added to working memory. Sensory

Towards the Knowledge Level in ~oar Page 11
i
information can be retained by explicitly attaching it to other wxisting

structures. Otherwise. it will be displaced when new information arrives.

Figure 1-1 summarizes the major functional and structural components

of the Soar architecture — its memories. basic computational cycle,

learning, and interfaces.

e Purpose of Research: Architecture for general intelligence.
e Organizing Framework: Goals and problem spaces

e Long-term Memory: Recognition-bhased productions.

e Short-term Memory: Objects and attributes.

e Basic Computation Cvele: Elaboration (access LTM until
quiescence) and decision.

e Decisions: Preference-based for problem spaces., states. and
operators.

e Subgoal Creation: Impasses in decision scheme.

¢ Learning: Chunking — ~ummarize processing of subgoal as a
production.

e Interface to External Environment: Asvnchronous through top-
state.

Figure 1-1: Summary of Soar.

Towards the Knowledge Level in Soar Page 12

2. Architectural Support for Knowledge

The conventional description of Soar provided in the previous section
does not always make clear the ways in which the architecture directly
supports knowledge. That is the task for this section — to make explicit
the ways the architecture directly supports knowledge in general. and
procedural. episodic. and declarative knowledge in particular. The
question of indirect architectural support is left to the later sections. which

examine each of these three types of knowledge in detail.

General support is provided by productions. the elaboration phase.
impasses. subgoals. problem space search. working memory, énd chunking.
Productions provide for the explicit storage oi‘ knowledge. The knowledge
is stored in the actions of productions, while the conditions act as access
paths to the knowledge. The process of retrieving knowledge by the
matching and firing of a production comprises a search of the system's
explicitly stored long-term knowledge. It is thus termed knowledge search
(or k-search). Knowledge retrievable by k-search — i.e.. by the firing of a
production — is termed k-retrievable knowledge. K-search is efficient, but

relatively limited in its capabilitieq.

Knowledge that is not retrievable by the firing of a single production
may still be retrievable by the firing of multiple productions in a single
elaboration phase. This happens when information retrieved early in an
elaboration phase provides the cues that allow the desired information to

be retrieved by a later production firing. It also happens when the desired

"Towards the Knowledge Level in Soar Page 13

information is distributed among the actions of multiple productions.
which retrieve it by firing jointly within the same elaboration phase. This
is termed A “-search. and knowledge retrievable through elaboration i
termed k*-retricrable knowledge. k*-search is exhaustive but efficient,
allowing the system to use a significant body of knowledge in its decisions

even under relatively stringent time constraints.

The creation of impasses provides a means for determining when the k*-
retrievable knowledge is an inadequate basis for making a decision. The
decision procedure can detect incompleteness and inconsistency in the set
of k*-retrievable preferences. but cannot directly detect incorrect or sub-

optimal knowledge.

Subgoals provide contexts in which knowledge that is not k*-retr:ievable
can be retrieved by problem-space search (or ps-search). Knowledge that
is retrievable by ps-search is termed ps-retrievable knowledge. Because
problem-space search (ps-search) is always eventually grounded in
production firings (k*-search), there is a fairly direct relationship between
ps-retrievable knowledge and k*-retrievable knowledge.? Knowledge that
is ps-retiievable in the current context is constructed from pieces of
knowledge which are independently k*-retrievable in other contexts, but

not jointly k*-retrievable in the current context. Ps-search allows for the

3Here. and in the remainder of this chapter :he terms k*-search and k*-retrievable
knowledge will be assumed to subsume the terms k-search and k-retrievable knowledge,
respectively. except where the distinction is particularly crucial.

Towards the Knowledge Level in “oar Page (4

considerat.on of alternatives and the deliberate construction of
information. whereas - k*-search provides for only the monotonic
accumulation of knowledge. Problem-space search is selective and slow.
but can with sufficient resources retrieve any knowledge in the system's

knowledge levei.

Working memory provides a locus where retrieved knowledge can be
examined and used. It also provides a locus where new knowledge can
reside temporarily before it is stored into long-term memory by chunking.
Chunking provides a means of creating new productions. thus directly
augmenting the system’s store of k*-retrievable knowledge. and indirectly
augmenting its store of ps-retrievable knowledge. Chunking is the

mechanism for converting ps-search to k*-search.

Procedural knowledge is specifically supported by the architecture in
four ways. First, production execution is a primitive form of controlled
action. Executing a production performs a form of retrieval in which the
retrieved information is adapted to the current situation before being
retrieved. The nature of the adaptation is determined by the production’s
variables. Variables that are shared between conditions and actions result
in the retrieved information being instantiated to be about existing
objects. Variables that exist only in actions result in the creation of new
objects. Control is exerted on production execution by the match.
Production conditions specify situations that must hold in working

memory in order for the retrieval actions to be executed (Newell,

Towards the Knowledge Level in ~oar Page 15

Rosenbloom & Laird. 1989). Unlike traditional production systems. there
is no additional conflict resolution process that participates in the control

of production execution.

Second. the selection of an object for a context slot is also a primitive
form of controlled action. Selections are actions performed by the
architecture that change the focus of problem solving in working memory.
For example. the selection of a new operator changes what the system is
attempting to accomplish. Preferences represent architecturally

interpretable control information for the selection process.

Third. the concept of a problem-solving operator is partially supported
by the architecture. The architecture provides an operator role in
contexts and the decision procedure that enables the selection of operators
for operator roles. It also provides for the generation of impasses when
there is insufficient knowledge about how to select or execute an operator.
An important form of support not provided is an architecturally
interpretable operator language. Instead. operator execution always
eventually grounds out in memory retrieval (and motor behavior). How
this happens may be quite complicated, involving numerous subgoals. or
the interpretation by productions — that is. by further memory retrieval

~ of an arbitrary operator language.

Fourth, the architecture provides motor commands that perform

primitive actions in the external environment. There is not yet a complete

Towards the \nowledge Level in Soar Page 16

and standard set of motor commands in Noar. [nstead. what exists is a
text-output module. providing basic text-output commands. and a flexible
mechanism for adding new modules to. for example. control robot arms
(Laird. Yager. Tuck. & Hucka. 1989) and mobile robots. Nelection of
motor commands is not provided directly hy the architecture. [t is under
the control of the knowledge (productions) which retrieve the motor
commands into working memory. usually under the aegis of operator

execution.

Episodic knowledge is specifically supported by the chunking and
execution of new productions. Chunking acquires new productions based
on problem-solving episodes. The actions of a chunk correspond to
information that was generated as the result of an episode. When the
chunk executes it retrieves information that is similar to that generated
during the episode — though. as mentioned above. the retrieved
information is generally adapted to the current sitnation rather than being
a verbatim record of the earlier episode’s results. The conditions of the
chunk ensure that the adapted results are only retrieved in similar
situations. Not provided by the architecture is a mechanism that creates

verbatim records of the system's experiences for later examination.

Declarative knowledge is specifically supported by the working and
production memories. Working memory is a transient memory of objects.
with associated attributes and values. These objects are declarative in

that they are examinable (by productions), but they need not have a fixed

Towards the Knowleage L-vel in ~oar Page 17

semantics. Production memory provides for long-term storage
declarative structures — in the actions of productions — which can be

retrieved (and adapted) by production execution.

3. Procedural Knowledge

As mentioned in the introduction. procedural knowledge is knowledge
about the agent’s actions. which includes knowledge about which actions
can be performed. which actions should he performed when (control
knowledge). and how actions are performed. Procedural knowledge is
already one of the most well developed and understood parts of Soar.
Soar was. after all. originally developed as a general problem-solving
architecture. Thus this section primarily serves as a review, but it also
ser;les to develop a number of the basic concept~ used in the subsequent
sections on episcdic and declarative knowledge. The discussion is divided
into subsections covering the three subdom:ins mentioned above:
performable actions. action control. and action performance. For each of
these subdomains. we discuss how the knowledgr is represented. stored.
retrieved. used. and acquired. This same suborganization will be followed

in later sections on episodic and declarative knowle ige,

3.1. Performable Actions

Performable actions are represented as operators. along with acceptable
preferences that can cause the operators to be considered in some set of
situations. Each operator is represented in working memory as an object

— a declarative structure — rather than a production. For example, an

Towards the Knowledge Level in ~oar , Page 12

;
operator in the Eight Puzzle that slides a tile from one cell on the board
to an adjacent one could he represented as (operator o/ ‘name slide).
When augmented with parameters specifyving the source and destination
cells for the tile. the operator can be represented as (operator o/ “name
slide “source ¢/ “destination ¢2). where the symbols ¢! and ¢ are the

identifiers of the two cells.

The declarative structure for operatoré.. and their acceptable preferences.
are stored in the actions of productions. The entire object can be stored
in the actions of a single production (k-retrievable): it can be distributed
across the actions of a group of productions that all fire within a single
decision cycle (k*-retrievable): or it can be distributed across multiple
productions that fire in a subgoal that constructs the operator. bit by bit

(ps-retrievable).

Problem spaces are a major source of context for operator retrieval. The
production in which the above Eight Puzzle operator is stored will have a
condition which tests that the Eight Puzzle problem space is the one
currently selected in a context before retrieving the operator for the
context. It is also often useful to utilize the operator's preconditions as a
source of retrieval context. If this is done. then the operator is only
retrieved in situations for which it is applicable. An alternative is to
retrieve the operator according to means-ends analysis, that is. when the
operator will reduce the difference betveen the current state and the

desired state. With means-ends analysis. an operator may be retrieved

Towards the Knowledge Level in oar Page 19

even when its preconditions are nor <atisfied by rhe enrrent state.

Operators by rthemselves .in nothing. The architecture does not
understand the language(=) in which perators are written. and therefore
does not know how. based just ..n the operators themselves, to ¢ither
select among them or 1o perform them. The hest the architectyre can do
without additional knowledge is to perform various default actions based
on its understanding of their acceptable preferences. [t can select an
operator if it is the only eandidate available. and generate an impasse if

there is more than one operator. or if the selected one cannot be executed.

Operators. and their acceptable preferences. are cues for retrieving a
variety of additional knowledge. The operator structure can trigger
knowledge about how to select and perform operators (Sections 3.2 and
3.3). The acceptable preferences can rrigger knowledge in both
prospective and retrospective fashions. Prospectively. acceptable
preferences for operators determine what operators are being considered
for the next selection. Retrospectively, acceptable preferences for
operators act as episodic knowledge about what operators were considered

for what states (Section 4).

Operators. and their acceptable preferences. are acquired by the
chunking of problem-solving episodes that generate them as results.
Chunking does not by itse!f generate new operators. but it car cc-.vert ps-

retrievable operaturs into k*-retrievable ones. as well as store away in

‘" Towards the Knowiedge Level in Soar Page 20

production memory new operators that are generated. The conversion of
operator knowiedge from ps-retrievable to k*-retrievable is the obvious
caching effect produced by chunking. Storage of newly :enerated
operators factors into two cases. If the new operators are generated
internally. then they must have already been ps-retrievable — that is.
retrievable by problem space search — thus reducing this case to the
previous caching situation. If the new operators are based on external
information. chunking can turn unretrievable operators into k*-retrievable
operators. This is a more subtle cunsequence of chunking that is worth

looking at in some detail.

Yost & Newell (1988) demonstrated how new operators could be
acquired from external information. in the context of a system called TAQ
(Yost. 1987) that acquires new tasks (i.e.. problem spaces) from external
descriptions. In more recent work. this approach has been extended to
take simple English instructions for a range of immediate-reasoni.ng tasks.
such as categorical syllogisms and sentence verification (Lewis. Newell, &
Polk, 1089). Figure 3-1 shows the two basic steps. The first step in task
acquisition is to comprehend an externally provided description of the task
to be acquired. This description can conceptually take a variety of forms
— versions of TAQ have accepted descriptions in simple English sentences
and in a formal problem space notation. The outcome of the
comprehension process is the presence in working memory of a declarative

description of a problem space for the task. The second step is to so!ve

Towards the hnowiedge L=\v»| 1n “nar

!

Page 21

the problem usinz the declarative description interprotivaly, That s, -

each point in task performance. if the next required activity — <neh as the

generation of an operator — is not directly performabir By K =~earch, then

a subgoal occurs. Within the <ubgoal. the declarative ask deseription i~

examined and interpreted by a set of pre-existing problem <paces that

search through the declarative task description for information ahont what

to do in the current situation.

Comprehension
Unretrievable Ps-retrievable
-
External Internal
declarative declarative

specification of
task

specification of
task

—p

Interpretation

K*-retrievable

Internal action
specification of
task

Figure 3-1: The two stages of acquiring operator knowledge.

The chunks acquired for these interpretation sub: ais directly impiement

the required activity.

Chunking the comprehcusion process converts

unretrievable operators into ps-retrievable operators — using memorization

techniques described in Sections 4 and 5 — and chunking of the

interpretation process makes the ps-retrievable knowledge k*-retrievable.

Towards the Knowledge Level in ~oar Page 22

3.3. Action Control

Control knowledge —~ that is. knowledge about how to <elect among
performable actions — is represented to :he architecture by operator
preferences. The three types of preferences described in Nection | —
acceptability. desirability. and necessity — are used to represent thiee
qualitatively different tvpes of control knowledge. Acceprtability
preferences represent knowledge about whether an operator is to be
considered for execution. ('nconsidered operators have no effect on the
decision procedure: they cannot be selected. nor can they cause an impasse
to occur. Desirability preferences represent heuristic information that can
be brought to bear in determining what operator is likely to lead towards
goal satisfaction. Necessity preferences represent constraints derived from
the goal. They can be used to guarantee that certain conditions are
always (or never true) during the search. thus ~liminating the need to
explicitly test them at the end. In the extreme. necessity preferences can
be used to explicitly represent the entire sequence of steps in a procedure

that achieves some goal. eliminating the need for an explicit goal test at

the end.

Preferences are stored in the actions of productions. In any particular
situation an arbitrary preference can be k-retrievable. k*-retrievable. ps-
retrievable. or unretrievable. The primary context for preference retrieval
is the object being considered and the objects already selected as part of

the problem solving context. For example. the retrieval context for

*T wards the Knowisdge Level in ~oar Prage 2.

operator preferences in the Eizht Puzzle incpudes the perator oeing
monsidered (to ~lide a tile from cell o7 it cell =2 the goal 1o be qenieved
setion 1o the Eight Puzzies the problem spaee Eight-Przzler. and 1he
<tate to which the operator is 10 be applied. For hinary preferences, <nch
as petter worse and indifferent preferences, the retrieval context inciudes

muitiple contending objects,

Preferences are used hoth by the architecture — rhe lecision procechire
= and by other knowledge. The areehitecture 1ises preferences to
determine what ~election 1 inake. r what tvpe of subgoal to generate if
no selection can be made. A~ mentioned in Section 3.1. preferences can
act as cues about what the decision procedure is going to do. and to

reconstruct what it did in the past,

Preferences are acquired by rhe chunking of ; roblem-solving episodes
that generate preferences as their results. Most of our eiperience in
acquiring preferences involves the acquis jon of tesirability preferences
and that is all that will be discussed here. thonzh 1he 1equisition of
acceptahle preferences is covered under the tiseussion of operator

acquisition in Section 3.1.

As with knowledge about performable actions. chunking can turn ps-
retrievable preferences into k*-retrievable preferences, and convert

unretrievable preferences into ps-retrievable and k*-retrievable

preferences. The most common way to turn ps-retrievable preferences

‘Towards the Knowledge Level in Soar Page 24

intofk‘&retrievable ones involves a look-ahead search. This process has
been described in detail elsewhere (Laird. Newell. & Rosenbloom. 1987).
but the essence is to use Soar's basic search capability along with
knowledge — about how to evaluate states. how to back up evaluations to
earlier operators and states, and how to generate preferences from
evaluations — to generate, and thus learn via chunking, preferences about

operators that have tied for selection.

As demonstrated in (Golding. Rosenbloom. & Laird, 1987). it is possible
to use external advice to assist in the process of converting ps-ret‘rievable
knowledge into k*-retrievable knowledge. If advice is given about what
alternatives are good (or bad. for that matter), the advice can be turned
into preferences which guide the look-ahead search. This can reduce the
amount of search required without changing the chunks that are learned
for the search. Externally provided knowledge can also be used to shift a
piece of control knowledge from unretrievable to k*-retrievable using the

techniques described in Section 3.1 (Yost & Newell. 1988).

3.3. Action Performance

As mentioned previously, Soar does not have a single, architecturally
intemretgble language for action performance. Instead, there are several
distinct ways of representing action performance. One way to represent
action performance, at least for external actions, is as some combination of
moter commands. Retrieval of motor commands into working memory

causes the cssociated motor systems to behave in appropriate fashions.

Towards the Knowtedge [=vsf 1n ~oar Frage 25

There is a fixed ianguage of motor commands, as determined byothe

available motor <vstems.

A second way 1o represent action performance is as 1 ~nbprocedure rhat
performs the action when executed. [n ~oar terms. the ~subprocedure is
the processing in a <ubgoal that arises when the results of performing the
action are not k*-retrievable. Within the subprocedure. the types of

- procedural knowledge described in this section would be applied

recursively,

A third way to represent action performance is as the state that results
from applyving the operator representing the action. As with operators,
the entire state can be stored in the actions of - single production (k-
retrievable). it can be distributed across the actions of a group of
productions that all fire within a single decision rvele (k*-retrievable). or
it can be distributed across multiple productions that fire under different
circumstances (ps-retrievable). The ps-retrievable «ise corresponds to the
representation of action performance as subproce-iures that is described
above. Such a procedural representation — that is. representation as a
subprocedure. rather than representation of a procedure — can actually be
used for any piece of knowledge. whether the knowledge is itself about

procedures or not.

The primary context for the retrieval of a result state is the conjunction

of relevant features of the previous state and the operator. The result

Towards the Knowledge Level in oar

state is used as the basis for further problem solving. by serving as part of
the retrieval context for goal testing, result generation. siate and operator
evaluation. and operator generation. selection. and application. The resuit
state's acceptable preference is used by the decision procedure to select the
state as the current state. As mentioned in the previous subsections. other
knowledge may also use the preference prospectively to determine what
state is going to be selected. and retrospectively to determine what state

was selected. and what operator and state preceded it.

Acquisition of result states occurs by the chunking of problem-solving
episodes that generate such states. One of tte most common ways to
acquire a k*-retrievable result state is to chunk over the process of
executing a procedure that represents an acticn. As with the acquisition
of knowledge about control. external advice can be utilized to speed up
the process of acquiring knowledge about iction performance. In one
version, demonstrated for subtraction. Ti:-Tac-Toe. and simple block
manipulation, the system starts out with a set of primitive operators that
are sufficient to implement the individual tests and modifications made by
any operator. Advice is then used to det:rmine which elements the action
should test and generate for the specific operator being acquired. Given

the primitive operators, this approact allows arbitrary operators to be

acquired from advice.

Another way to acquire knowledge abou: action performance is to chunk

over the process of interpreting an externally provided description of the

Towaras the Knowledge Lever in ~oar [rge 27

action. as in (Yost & Newell, 1988). The process proceeds much as iid 1.
corresponding one in Neetion 3.1. where in this case. one or more ~hinks

are learned that can retrieve the re<nit ~rate in the future.

3.4. Summary

Procedural knowledge appears to he adequately supported by the current
architecture. This should not be too surprising as it was originally
designed for this: or at least for representing problem-solving knowledge.
One aspect that might come as a surprise is that productions. though they
are a primitive form of action. are not rhe model for action — operators
are. Another possibly <urprising aspect is that there is no single
architecturally interpreted operator language. The fixed operator language
common to most systems is replaced by the ability to perform operators
by memory retrieval — either k*-retrieval or ps-retrieval — in conjunction
with motor commands. The flexibility of rhis approach allows
performance knowledge to be represented either directly in action form or
as declarative structures that are interpreted. [u fact. with the aid of
software interpreters it should be possible to consirict arbitrary operator
languages. One example of suck an approach is rhe language and

interpreter used in the task acquisition work.

Learning has an important place in the use of procedural knowledge. By
converting ps-retrievable knowledge into k*-retrievable knowledge. it can
improve the system's ability to retrieve relevant knowledge under real-

time constraints. and thus improve the system's approximation to the

Towards the Knowledge Level in Soar] Page 23

,
prisiple of rationality. It can convert interpreted behavior into direct
action. It can also acquire new knowledge from the outside worid.

allowing the system to expand the tasks it can work on and the knowledge

that it can use on those tasks.

4. Episodic Knowledge

Episodic knowledge is knowledge about what has occurred. In general.
the individual elements of episodic knowledge can be viewed as instances
of a binary predicate. Occurred(r. y), where r is an object. action. or
sequence of actions that has occurred — for simplicity we will refer to all
such members of the class of things that can occur as events — and yisa
context in which the event occurred. Two loose but illustrative examples
are Occurred("gaf", "List 1 of Experiment 2"). which denotes that a
particular object (the nonsense trigram "gaf") occurred in a particular
context (during the first list of experiment 2), and Occurred(" pull-knob
then turn-knob". "setting time on watch"), which denotes that a
particular sequence of actions (pulling out of the watch's knob followed by

turning of it) occurred in a particular context (the setting of the watch).

There are two notable features about the role of episodic knowledge in
Soar. First, episodic knowledge can be represented at many different
levels of explicitness. Second, although the representation, storage,
retrieval, and use of episodic knowledge is rather straightforward, the

acquisition of some forms of episodic kn,wledge is quite challenging. It

leads us to posit the existence of comparatively complex strategies for

Towards the Knowledge Level 1n Soar Page 29

acquiring these forms of episodic knowledyge,

4.1. Representation
One way to represent episodic knowledge is completely as declarative
structures: that is. as objects with attributes and values. [n such o

representation. the above two examples might appear as follows.

(occurred e "event o/ “context /)
(object 01 "name gaf)
(context I “experiment 2 “list 1)

(occurred el “event s/ “vontext ¢
(sequence sI “actionl «1 “action2 2
(action a/ "name pull-knob)

(action a2 "name turn-knoh)

(context ¢2 "name setting-time-on-watch)

However, not all of this knowledge need be represented directly as
declarative structures. The alternative is to omit ~ome of the components
frcm the explicit representation. and assume them implicitly by default.
The key to making this work is an understanding of the episodic nature of
chunking: that is. that chunks are acquired as the resnlt of problem-
solving episodes. and execute in contexts that are similar to the ones in
which they were learned. Spinning out the consequences of this
understanding leads to 2 sequence of ways of omitting and modifyving

components of the representation.

The first component that can be omitted is the context. The conditions
of a chunk represent both the context in which the information was

learned and the contexts in which it should be retrieved. Therefore. when

‘Towards the Knowledge Level in ~oar Page 30

information is retrieved from long-term memory it can be assumed that it
was learned in a situation that was similar to the retrieval situation.
Eliminating the explicit context from the example above leaves the

following explicit structures.

(occurred el “event ol)
(object o1 "name gaf)

(occurred e2 “event s1)

(sequence 81 “actionl al “action2 a?2)
(action a1 “name pull-knob)

(action a2 "name turn-knob)

The next compoaent that can be omitted is the occurred predicate,
which, now that the context is removed. just states that its event
occurred. If it is assumed that all knowledge that is retrieved from long-
term memory got there via chunking — even if the system starts out with
a number of productions. after sufficient time nearly all of its productions
should have been acquired by chunking — then it can be assumed that any
structures retrieved from long-term memory must have been seen before.
Therefore. the explicit predicate can be eliminated ir favor of the
assumption that anything that is retrieved has occurred. Eliminating the
occurred predicate from the example leaves the following explicit

structures.
(object 01 “name gaf)

(sequence s1 “actionl al “action2 a2)
(action @1 "name pull-knob)
(action a2 "name turn-knob)

T waras the Knowledge Level tn ~oar B roge 41

/

The episodic knowledge nbow the zaf evenr i« pow represented i
~simply as o rypical Soar objeet — all ~truetyres that were introdiee| ey
for their role in representing «pisodie knowledge have been defeted, s
is thus irs final form. However, fur the wateh event. two additionai reps
are needed to convert its action sequence into its final form. The first
step involves a change in nomenelature 1o replace actions with operators.
Operators are intended 1o represent actions that can b~ rerformed rather
than actions that were performed. but rhe assumptions made < far imply
that if an operator is retrieved in o context then it must have heen learned
in a similar context. Operators can therefore stand in for actions thar
have occurred. Making this change eliminates the need for creating new
structures to explicitly represent actions that have oceurred. using the

existing operator structures instead.

(sequence s/ “operatorl uJ ‘operator2 a2)
(operator al ‘name pull-knob)
(operator n2 "name turn-knoh)

The <econd. and final. step is to replace the exuiicit representation of
operator sequences with preferences. As mentined in the previous
section. preferences can be used retrospectively to ietermine what objects
were selected. Through their context fields — tiy. goal, problem-space,
state. and operator fields — they can also be nsed to determine what
objects were current in the context at the time the object was <elected.
The following recoding of the example represents that operator ¢/ was

acceptable in the situation characterized by gl. pl. and si; that state 52

Towards the Knowledge Level in Soar Page 32

was-acceptable in the situation where operator a/ was additionally selected
(it is al's result); and that operator a2 was acceptable in the situation

where state sl has been replaced by state s2.

(preference al “value acceptable “role operator
"goal g1 problem-space pI “state s1)
(operator al “name pull-knob)
(preference 32 "value acceptable “role state
"goal g1 problem-space p1 “state s “operator al)
(preference a2 “value acceptable “role operator
“goal g1 problem-space p1 “state 82)
(operator a2 “name turn-knob)

As was true of the gaf event earlier, the watch event is now represented
without the use of any structures introduced solely for their role in
representing episodic knowledge. The explicit structures that are left may
actually be larger than some of the previous (this is not true of the gaf
example), but they are structures that are already available because of
their role in problem solving. This is thus Soar's native form of episodic
knowledge. The significance of this is three-fold. First. this is the form of
episodic knowledge which is available without positing additional
semantics (or apparatus). Second. this form of episodic knowledge will
always be around anyway, so it needs to be taken into consideration.
Third, because it posits no additional apparatus. it should automatically

compose well with the other capabilities in the system.

‘Towards the Knowitedgs [=vel i ~oar Pige 33

4.2. Storage

The manner - f <torage of episodic knowledge is 1 function . rhe
representation that I used. Components that are direetly reprosented s
declarative struetures are <tored in the actions of productions. The "zaf*
example might be <tored i a production like the following [OF 1eross

multiple productions).!

—->
(occurred <-1> “event context <cl>)
(object name gaf)

(context <'v/> experiment 2 list 1)

Though this production i~ <hown without conditions. as described 1in
Section 3. it is necessary (and possible) to add additional conditions to

restrict the situations in which such declarative structures are retrieved.

Assumed parts are simply omitted from the aciions. However, for the
context assumption to work. a representation of 'he context must appear
in the conditions of the production. This doesn't allow the ronrext to be
retrieved as an explicit structure. but Jdoes constrain the explicit struetyres
to be retrieved only in contexts similar to the s in which they were
learned. The "gaf" example above would be stor-{ as a production like

the following one.

(context <cl1> “experiment 2 “list 1)
--> (object <0l> “name gaf)

“Symbols enclosed in angle brackets, such as - ¢/ -, are variables.

Towards the Knowledge Level in Soar

Page 34

-

Expiicit episodic knowledge is retrieved in the same way as are other
declarative structures; that is. by a combination of k*-search and ps-
search. Omitted components are retrieved by assumption. If the context
of occurrence is omitted, then it is assumed to share critical features with
the retrieval context. If the predicate is omitted. occurrence is assumed
for retrieved information. If actions are omitted, operator retrieval is
assumed to denote an action that was executea. If sequence information is

omitted, preferences are assumed to denote sequences of operators and

states that occurred.

4.4.‘ Use

There has not y2t been a great need for episodic knowledge in the tasks
that have so far been implemented in Soar. Nonetheless, it has been used
in several distinct ways. One way is the use of preferances as the basis for
a form of chronological backtracking — a short-term episodic use in which
the preferences remain in working memory throughout. Soar normally
backtracks in look-ahead search by terminating subgoals that lead to
failure. However, there are times when Soar thinks i’ knows what it is
doing — %0 no look-ahead search is being performed — yet failure still
occu;. Backtracking under these circumstances involves examining the
acceptable preference for the state at which failure occurred to find out
which state was current when the faileci state was selected. This prior

state is then reselected, and problem solving is continued.

e

Towards the Knowledge {.cv ot 1n ~oar Page 45

A second use is as the basis for recognition and reeall tasks tRosenbicon.
Laird. & Newell. 1987. Rosenbloom. Luird. & Newell. 19%%a5. [y -
recognition task the ~ystem i~ presenred with o st of items 0 i
memorized. [t is then prompted with an item which mayv or mav not be
in the list. [ts task is to ~ay yes if the item was in the list and no if it
wasn't. A recail task is <imilar. but instead of heing prompted with an
item. the system must produce as manv of the items in the list as it can.
without producing items not in the iist. These 1asks require episodie
knowledge because thev ask questions bout what happened in the

system's past.

A third use is as the basis for the transfer of procedural knowledge. The
procedural knowledge that Noar learns can be viewed as really being
episodic knowledge about the past behavior of the system. To use this
episodic knowledge as procedural knowledge. there is an implicit
assumption that what is deseriptive of rhe past is normative for the
future. This assumption is maintained nntil it leaiis to an error. at which
point the system attempts to recover hy doing something other than what

is directly dictated by its past experience (Laird. 19%8).

The issue of errors is actually a kev one when native episodic knowledge
is used. because. whenever an assumption is made. the possibility for error
creeps in. There are four classes of situations that can iead to errors.
Some of these are intrinsic in the natur of the worid. while others arise

because of specific architectural commitments in Soar. The first class of

Towards the Iknowledge Level in Soar Page 36

errors arises because of mistakes in credit assignment. Soar cannot
examine the conditions of productions. so when knowledge is retrieved it
can only guess as to which aspects of the retrieval context were shared
with the context in which the knowledge was learned. This can lead to
both errors of commission and omission. Suppose. for example. that the
system is winding a watch at the same time it is trving to recall the
elements that occurred in list 1 of experiment 2. It will retrieve both
"gaf" and "pull-knob then turn-knob". The problem.is that there is no a
priori reason to assume that one of these events is in the list and that the
other is not. In this particular case it might be able to use background or
other contextual knowledge to reason that the watch events were not part

of the list. but in other cases it may not be so lucky.

The second class of situations arises because of mistakes in context
generalization. There is a trade-off between the scope of applicability of
knowledge and its utility as episodic knowledge. The more general is the
context. the more situations in which the knowledge can be retrieved. and
thus be available for use. However. increasing the generality also
decreases the ability to discriminate the situations in which the knowledge
was originally learned from related situations. This can be seen clearly in
the acquisition and use of control knowledge. The more general is the
control knowledge, the more search is eliminated, assuming the
generalization is correct. However. generality also implies that the

knowledge will be retrieved in a variety of contexts, many of which are

Towards the Knowiedge Level 1n ~oar Page 47

only remotely like rhe one in which rhe Knowledge was iearned,

The third cluss of ~ituations urises heecause of mistakes in memory
attribution. The only examinable ~tructures in Soar are rhose in its
working memory. Nuch structures could 4rise from memory retrieval,
from intervention by the architectiire {the decision procedure}. or from
perception. Only those that arise from memory retrieval embody episodic
knowledge. Normally this <houldn’t he 1 problem because the decision
procedure and perceptual svstems each create struetures in a characteristic
fashion: the decision procedure onlv modifies certain special attributes of
goals: perception always adds its structures to special attributes of the

state in the top context. However. the possibility remains.

The fourth. and final class of situations can be c1used by any of the first
three. It occurs because of mistakes in co-oceurrence attribution. Such
failures occur when the system mistakenly thinks it has previously
experienced an event :- use it has experienced all »f i< individual pieces,
though never all as ;. of a single event, Supgpese, for example. that in
one context the system --es a large ball. and in a ~imilar coacext it sees a
green ball. A co-occurrence error oceurs if the svstem thinks that it saw
both in the same context. or worse. that it has seen a single large green
ball. In the recognition and recall tasks this probiem is partially dealt
with by assuming that k*-retrievable objects have been experienced, while

ps-retrievable and unretrievable objects ‘lave not. The rationale is that

k*-retrieval, being a limited computationa! mechanism. has a limited

Towards the Knowledge Level in Soar

/
abili}y to put things together in novel ways., while ps-retrieval allows

arbitrary structures to be created.

4.5. Acquisition
Episodic knowledge is acquired by chunking problem-solving episodes.
Though this is somewhat of a tautology for Soar. it is not always as simple
- as it sounds. The simple case is the acquisition of episodic knowledge
about objects generated in subgoals. " If such objects are returned as
results of their subgoals. then chunks are created which can later be used
as episodic knowledge about the objgcts. The variety of subgoal results —

objects, operators, preferences. etc. — leads directly to variety in the

episodic knowledge that can be learned.

Under normal circumstances this episodic knowledge is represented in
what we have referred to as native form: that is. predicates. contexts.
actions, and sequences are represented respectively by chunk existence.
production conditions, operators. and preferences. However. if the svstem
monitors its own performance. and creates declarative structures
representing what has transpired. then the chunks created for such
structures can be used as explicit declarative-form episodic knowledge
about what has transpired. In addition. such chunks can be used as

native episodic knowledge about the monitoring process itself.

One form of episodic knowledge that cannot be handled this easily is

knowledge about what has happened to the system: that is, knowledge

Towaras the Knowledge Level in ~oar Page 49

about what the svstem has perceived rather than knowledge hout what
the svstem has generated. The "zaf" wxample presented above is o tvpieal
pereentual event. The episodie knowledze to be acquired i~ about :he
perception of "gaf" in a particular context fexperiment 2, list 1. \s
described in Nection 1. Soar's input mechanism attaches perceptual
information to the state in the top problem-solving context. [n order for
information about the event to he stored into long-term memory by
chunking. an internal episode must he generated in which this perceptual

information is used.

For perceptual events it is relativelv easy to acquire a form of episodic
knowledge akin to a familiarity test. The svstem must simply chunk over
a subgoal in which it examines a representation .f the perceptual event
and the context. and generates as a subgoal resuit an occurred predicate
covering them (Rosenbloom. Laird. & Newell. 19%7). A familiarity chunk
for this example might look like one of the following two productions.

depending on whether the context is explicit or not.
fobjeet “name gaf)
feontext <cl> “experiment 2 "list 1)
>

{occurred <el> “event context <el>|

(object “name gaf)

(context <cl> “experiment 2 “list 1)
->

(occurred <el> “event)

In the systems so far implemented. context is actually ignored in the

learning of episodic knowledge. By having no explicit representation of

Towards the Knowledge Level in Soar Page 10

context in either the conditions or the actions of the chunks. the context is
effectively the entire history of the svstem. In this form. the "gaf"

familiarity chunk looks like the following:

(object “name gaf)
—->
(occurred <el> “event)

Familiarity chunks allow the determination of whether an event has
occurred before in a particular context. Whenever a representation of the
event appears in working memory along with a representation of the
context. an occurred predicate will be retrieved for them. Familiarity
chunks can thus support performance in recognition tasks. where the task

is to determine whether a presented object has been seen before.

What familiarity chunks do not directly support is the retrieval of events
that occurred in a particular context. For an event to be retrieved by the
execution of a chunk. the event must be stored in the actions of the
chunk, and not tested in its conditions. A retrieval chunk for the "gaf"
example should look something like the following (with an assumed

context and predicate):

(context <el.> “experiment 2 “list 1)
—->
(object <01> "name gaf)

For such productions to be learned by Soar, they must be created by

chunking over some form of problem solving. But chunking is not an

indefinitely flexible mechanism. A chunk's actions are always based on

Towards the Nnowiedge Lever :n ~oar Page 41

/
the results of a <ubgoal. and its conditions are Aways based o o
dependency analvsis of the results. This immediateiv imposes 1wo
constraints on the nature of the problem <olving that «an nndderiyv the
acquisition of retrieval chunks.

1. For the event to appear in the actions of a chunk. it must be
generated as a result of a subgoal.

2. For the event to not appear in the conditions of the chunk. the

subgoal results must not depend on an examination of the
event.

The first constraint is relatively casv ro meet: for example. by creating a
copy of the perceptual event in a <ubgoal. and returning the copy as a
result. However. attempting to meet both constraints at once leads to the
data chunking problem:'if the result is based on ~xamining the object to
be learned. then the conditions of the chunk will also test the object,
allowing it to only be retrieved when it is already available. For example.

using the copying strategy for the "gaf® example would lead to a chunk

like the following:

(context <cl> “experiment 2 'list 1)
(object <o0I> “name gaf)

-2

(object <o0l> "name gaf)

In contrast to the desired retrieval chunk. this «:ne tests that "gaf" is

already in working memory before it will retrieve itr. <o it doesn’t do the

job.

The solution to the data chunking problem is to separate the result

Towards the Knowledge Level in “oar Page 42

generation process from the use of the perceptual event. Result generation
must be based on what the svstem alreadv knows. rather than on the
perceptual event. One approach involves assembling the result from
components that the system can already retrieve (Rosenbloom. Laird. &
Newell, 1987). For example. if the letters "g", "a". and "f" are
retrievable. then "gaf" can be generated by retrieving and assembling
them. This is a syntactic compositional process which may or may not
respect any specific semantic rules in performing the assembly. Another
approach is to start with the context and to chain through a sequence of
productions which form a pre-existing, though possibly indirect. link
between the context and the event (Rosenbloom. 1988). For example,
(object ol “name gaf) can be generated if (context cl “experiment 2 "list
1) is already in working memory, and if the following two -etrieval chunks

exist.

(context <cI1> “experiment 2 “list 1)
->
(object “name fem)

(object <01> "name fem)
—->
(object <o01> "name gaf)

Either approach requires the system to start out with a set of primitive
elements that can be generated. Other more complex structures can then
be built up out of compositions of these primitive elements. For the work
on recognition and recall, the system was initialized with the ability to
generate the 26 letters. Conceivably, Soar could have been initialized with

an even lower level of primitives, such as simple lines, curves, and points,

“Towaras the Knowledge Level in ~our Page 44

from which it would construct the letters. [t enuld aiso hayve fromny
initialized with more meaningtul primitives, ~uch 2= the primitive ACT~ in
Conceptual Dependency Theory t~chank. 197531 or the epistemologienl

primitives in KL-ONE (Brachman. 1979).

Though the perceptual event cannot be used directly in the generation
process. it is still used in two critical ways. The first is as the basis of 4
goal test for the generation process. The generation process can
conceivably return any event that it can either assemble or chain to. o 3
goal test is necessary to determine when the desired event has been
generated. The straightforward approach of comparing the perceptual
and generated events does not work. Instead. it leads to a secondary
version of the data chunking problem in which the ~Omparison causes tests

of the perceptual event to appear in the conditions of the chunk.

To avoid this secondary data chunking problem. the goal rest is based
on a familiarity chunk for the perceptual event rather than direetly on the
event. Given a familiarity chunk for the perceptuai event, the generation
goal test is satisfied when a familiar but unretrieved event is generated.
The test of familiarity guarantees that the event has been seen in the
current context (or a similar one). If the event ix uaretrieved, it is one
that the system has not previously learned to generate. This test is
somewhat overgeneral in that it can't guarantee that the generated event
is a copy of the current perceptual event However. at worst it will only

generaic a different event that is familiar in the same context. If this

Towards the Knowiedge Level in Soar Page 44

happens. it is always possible to try again to generate an event that
corresponds to the input event. The use of a familiarity chunk as the goal
test for the generation process makes this is a generate-recognize approach
to recall (see. for example. Watkins & Gardiner, 1979). though focused on

the acquisition phase rather than the retrieval phase.

The second way that the perceptual event is used is as the basis for
controlling the search through the space of events that can be generated.
The goal test determines the correctness of the result. but does not affect
the efficiency of the sear - Using the perceptual event as control
knowledge makes tlhe search tractable. potentially removing ali
bacl_ctracking. without affecting the correctness of the result. Thus the
result technically does not depend on such control knowledge. The
bottom line is that the use of search control knowledge can speed up
performance withcut introducing additional conditions into chunks (recall
from Section 1 that chunking does not bactrace through the use of
desirability preferences by the decision procedure). Of secondary
importance is that the use of the perceptual event as search control
increases the likelihood that the first event generated will correspond to

the perceptual event rather than to another familiar but unretrieved

event.

When the generation, goal testing, and control process are all put
together, a retrieval chunk can be learned that is identical to the one that

was desired. Context can be treated in the same ways that it is for

Towards the Knowieage [=\ey in ~nar e 45

familiarity chunks. [t van be explicit 1in rhe actions), assumed in ke

conditions). or completely jznored mowherer, The SVSTems s tar

implemented have lenored conrexr.,

One consequence of this wpproach 1o the aequisition of retrieval chnnks
is tnat it forces information storage to be based on an understanding |
process. The nnderstanding may be only of svntax (surface structure), or
it may be of a deeper <emantic (deep strueture) nature. but without it,

learning will not oceur, There is no ~imple assignment operation — <uch

as the SETQ operation in Lisp — rhat allows an unanalyvzed structure to
) be stored in long-ierm memory. A <econd consequence is that the

understanding process must be a reconstructive — or analysis-by-synthesis

— process (Bartlett. 1932, Neisser. 1967). in which vents are reconstructed
in terms of known structures. A third consequrnce is that the storage
process is semantically penetrable. Other knowledyge can potentially alter
the reconstruction process, and rhus what = <toped, leading to
generalization and other forms of fias in tl- me:Hry struetures that are

stored.

4.6. Summary

Soar can represent. store. retrieve. use. and acquire episodic knowledge.
However. the situation is nowhere near as clean and simple as it was for
procedural knowledge. In fact. if we were to sit down to design a
capability for episodic knowledge from scratch. with no constraints. we

would be unlikely to design it as currently embodied by Soar. What the

Towards the Knowledge Level in Soar Page {6

architecture most directly supports is native episodic knowledge about
structures generated by the system itself. Nuch knowledge is represented.
stored. retrieved. and acquired without requiring additional cognitive
effort. However, the assumptions required to use such knowledge can lead
to errors. By increasing cognitive effort. more explicit forms of episodic
knowledge can be acquired that require fewer assumptions for use. and
thus hopefully lead to fewer errors. Such structures are not terribly
dissimilar to the structures us d in other episodic memory proposals. such

S QD

as Scripts (Schank and Ableson. 1977) and E-Mops (Kolodner. 1683).

The situation is even more complicated for episodic knowledge about
perceptual events. Three features of the architecture yield strong
constraints on how the knowledge is acquired.

1. Chunk actions are based on subgoal resuits.

2. Chunk conditions are based on the supergoal structures upon
which the results depend.

3. Perceptual information arrives in the top goal.
-
Together these features force a reconstructive approach to knowledge
acquisition. Though this approach is considerably more complicated than

simple verbatim storage of what has transpired. it does have a number of

promising properties.

Given the overall picture of episodic knowledge, as relatively complicated
and messy, it is important to ask w'ether this signals a need for

modification of the architecture. One key question is the appropriateness

Towards rhe Rnowiedge Lever in soar P ige 47

of the levels of <upport and constriint rhat -re provided o i
architecture, For psveholoy, this is + matrer of the oxtent .. Wiien thee
tevel o ~upport models human capaiiiities, and the fovel of constraipe
models human limitations. For AL this i~ 1 matter of whether the <vsren
achieves an appropriate level of wpisodic functionality. A serond key
question is whether there are more appropriate mechanisms — for vither
definition of "appropriate” — for the ~upport of episodic knowledge which
could be integrated cleanly into rhe -rehitecture. Providing etajled

answers to these two key guestions remains for fucure work,

5. Declarative Knowledge
Declarative knowledge is knowledge about what is true ir the world.

Examples include rhe facts that dogs have four “-¢s and that Fido is a

wn

dog. Declarative represeatation comes in many ‘orms. such as natural
language. diagrams. maps. charts. tables. and eruphs. This i~ also the

area with which logic is classicallv concerned. \ l.gie has a4 svnrax

specifyving the form that <tatement~ rake, and Canties which perites
logieal statements to an abstract « neeptualization. o w eld, For rir
order predicate calculus (FOPC . 'he svatax . ceed o constunts,

variables. predicztes, connectives (A. /. -, and 1. «nid quantifiers (Vv and
3). The mapping between the svatax and the <emantics, calleq the
interpretation. is used to determine the truth of <tatements expressed in

the syntax of the logic.

In this section we will be primarily concerned with the svatactic side of

Towards the knowiedge Level in Soar Page 48

;

declarative knowledge. taking advantage of logic's privileged role in Al as
a language for representing declarative knowledge. We will examine how
declarative knowledge is represented (its svntax). stored. retrieved. used.
and acquired. On the issue of semantics. e will assume that the meaning
of a structures is determined by a combination- of two factors: its
relationship to the outside world. as mediated by the perceptual and

motor systems. and how it is used by internal processes.

As with episodic knowledge. the main cha'enge will be in the acquisition
of declarative knowledge. The data chunking techniques described earlier

will be extended to handle declarative representations.

5.1. Representation

As with episodic and proceduial knowledge, there are several different
ways that declarative knowledge can be represcnted in Soar.> The most
flexible and general approach is to represent each syntactic componert —
whether it be a constant. variable, predicate, connective, or quantifier —
as an object. The details of exactly how this is done are not crucial, but
the general flavor should be clear from the following example which shows

a statement in FOPC and how it could be translated into a set of objects

in Soar.

Sln this section we focus on derivation-based represeniations for logic. Other
representations are possible. such as validity-based techniques ~ sar, for example, (Polk &
Newell, 1988) and (Polk. Newell. & Lewis. 1989) (or research on nental models in Soar.

These have somewhat different properties. but much of the discussion would remain the
same.

Fowards the Knowieage [eve] o ~oqr Frage {4

Vo Piry Z Qi

Lquantifier o1 name Torall variahie oy Fodv b
pvariabibe <0 game v

veontiective S0 gume Tmplies contece jent o/ SONseqenT
ipredicate v numie 1 argument oy

(predicate »7 "name o argument 1/

For <imple ~tatements containing no quantifiers or variables, no
predicates with more than two arguments, and no connectives except for
A. there is a simpler native representati- n that takes direct wlvantage of
Soar's object <tructiure. Constants are represented as objects, predicates
as attributes, and conjunction us simuitaneous ocenurrence. Here's a simple

example about Fido.
Category{Fido. Dog) A Alive(Fido)

(object o1 "name fido “category 02 “alive)
(object 02 "name dog)

This native representation is more <uceinet than the -ne above, hut in

exchange it lacks expressibility,

Another variation is to use productions s a repre~entation tor a subelass
of implications. A production can represent n universaliv quantified
implication in which the antecedent is a conjunctict. of predicates, and the

consequent is an existentially quantified conjunction of predicates,
V(& poeread)[Cy UL i) A e A Cilrponazy) =
Hy ooty A e Y o) A A S VL RS YT ||

The existential quantifier in the consequent arises from the ability to

create new objects when variables appear in actions that are not in

‘Towards the Knowledge Level in Soar Page 50

conditions. A form of negation as failure is also available in rhe
antecedent which allows a predicate to be assumed false unless it is

explicitly known to be true (that is. available in working memorv).

Implications encoded as productions are non-examinable and can only be
used to forward chain. We will not discuss them further here. Instead we

will focus on examinable structures of either of the first two types.

5.2. Storage
Storage of declarative knowledge is straightforward. As with
declaratively represented procedural and episodic knowledge. declarative

knowledge is stored in the actions of productions.

5.3. Retrieval

Declarative knowledge is retrieved by k*-search and ps-search. If the
knowledge is stored directly in productions, k*-search can retrieve it.
otherwise ps-search is required. Hopefully. by this point. this is obvious.
However. less obvious is what the context should be for retrieval of
declarative knowledge. The retrieval contexts for both procedural and
episodic knowledge are straightforward. An element of procedural
knowledge is recrieved when it may be needed to produce behavior. An
element of episodic knowledge is retrieved when a context is established
that is similar to the one in which the episode occurred (at least if tﬁe

context is tested in production conditions rather than stored in production

actions). In contrast, declarative knowledge is by its essence not

Towaras 1ae Knowledge Level 1 soar Page o

/
associated with a particuiar context. The knowledge i~ trie, P per e

of rentext, and should be usable in anv contest requiring ir.

On the other hand. i declarative knowiedge is stored with no context —
that is. with a nuil set of production conditions — the knowiedsze will gor
only be retrievable in all contexts. it will in fact be retrieved in all
contexts. swamping the system with true but irrelevant information. One
approach to controlling the retrieval of Jeclarative knowledge is to use the
connectedness amorg facts as u co-relevance heuristic. This s often
implemented by the mechanism of ~preading activation. which retrieves
facts close to those that are already retrieved (Collins & Loftus. 1975.
Anderson. 1983). Another approach is to contro' the retrieval of
declarative knowledge by providing partial description of the knowledge
to be retrieved {Norman & Bobrow., 1979). The uartial description then

delineates the set of things which appear to he relevant.

The approach that we have taken is to <tore de-iarative knowledge in
diserimination network that allows retrieval f objects by partiai
description (Rosenbloom, Laird. & Newell. 19854, Given uny partial
description. a single object is retrieved along with 1he facts about it. The

construction of this discrimination network is discussed bhelow, under

acquisition.

One last important aspect of the rerrieval of Jeclarative knowledge

concerns the basis for believing that structures retrieved from long-term

Towards the Knowledge Level in Soar Page 52

memory represent true facts about the world. This helief must be based
on the implicit assumption that the svstem knew what it was doing during
the episode in which the structures were acquired. [n other words. the
system must trust its past behavior. This is one form of assumption that
cannot be completely avoiued by adding more explicit structure. Even if
explicit true-in-world annotations are added to all structures representing
true facts about the world. the system must still trust that in the past it
only added such annotations when the facts were true. It might be more
"careful" about adding such annotations than it is about adding
structures to working memory in general. but since there is no oracle for
truth, it is still assuming that these annotations were added correctly.
This assumption that the annotations are true is of the same type as the
original one. It may localize the assignment of trust. but can not

completely eliminate it.

5.4. Use

Declarative knowledge has a multitude of uses. [t can be used to
describe procedures so that thev can be reasonci about. or followed
interpretively (from which native procedures can be compiled). It can be
used to explicitly describe episodes. It can be used to describe knowledge
whose function is not yet clear. It can be used as the basis for

memorization tasks. A complete list would go on considerably longer, but

this gives a sampling of typical uses.

«Towards tne Knowiedge |-t =i i ~or

trage 53

5.5. Acquisition

The acquisition of Jdeclarative knowiedge has much in common with the
acquisition of episodic knowiedge. Declarative knowledge that i~ conerited
as the result of a problem ~oiving episode is directly acquired by chunking.
with a retrieval context that corresponds to those elements of the <ituation
on which creation of the knowledge depended, Likewise. the acquisition of
perceptually originating declarative knowledge utilizes the data chunking
solution deseribed in Nection 1.3. Though. to go beyond the types of
structures acquired in rhe research on episodic knowledge. Noar was
initialized with primitive «lements for the 26 letters. plus a set of primiti_ve
attributes (isa. has. color. response. letterl, letter2. letters. letterd. letter3,
letterB. letter?. letters, !atter9. lettert0). Using these primitives, facts are
represented by attributes relating named objects. For example. Isa(Fido,

Dog) is represented by the following structures.
(object <f> letterl <fI> letter? <f2> letter3 < fi1>
letterd <f4> “isa <d>)
(letter < f1> "name f)
(letter < f2> "name i)
(letter < f3> "name d)
(letter <f4> "name o)
(object <d> “letterl <dI> “letter2 <d> iettery <dd>)
(letter <d1> “name d)
(letter <d2> "name o)
(letter <d3> "name g)

This is a variation on the native representation described in Section 5.1.

The primary difference is that names. which were unanalyzable atoms in

81n future work we will be examining how to looser. up the requirement that attributes
be pre-existing primitives as well as investigating different levels of primitive elements.

’/

Towards the knowledge Level in ~oar Page 34

the earlier representation. have heen expanded out to where their internal

structure is open for examination and creation.

There are a number of ways in which the acquisition of declarative
knowledge is more complicated than the acquisition of episodic knowledge
in Soar. We have so far isolated three additional issues that must be
resolved in the acquisition of perceptually originating declarative
knowledge. 1) How is a discrimination network to be acquired that can
control the retrieval of declarative knowledge? (2) How is knowledge about
objects acquired incrementally? (3) How do chunks store the components

of an object?

As mentioned earlier. utilizing the data chunking solution alone results
in the acquisition of context-free declarative knowledge.’ Acquiring a
discrimination network thus requires an augmentation of the basic data
chunking solution. Abstractly, the approach is to modify the simple
memorization strategy underlying data chunking so that the acquisition of
new knowledge involves relating the new knowledge to what is already
known. If in the process of establishing relations. an explanation is
created as to why the new knowledge is different from similar existing
knowledge, this should lead to discrimination. Similar processing could

lead to generalization, or other alterations of the new knowledge prior to

There is a corresponding, but not identical, is.ue for perceptually originating episodic
knowledge which has not yet been addressed: how the situational context is incorporated
into chunk conditions.

Towards the Knowledge Lrvet in ~oar Page :

ot
ot

its being stored {Anderson. 1986. Rosenbloom. 1988).

The current implementation in Soar n<es ~uch a strategy to perform
object-centered discrimination. Given a new fact. ~uch as Isa(Fido. Dog ;.
the system uses the features of Fido 1o ee what object is retrieved from
the discrimination network. If Fidc is retrieved. no discrimination is
necessary. [f some other object. <uch as Fred, is retrieved. Fido's features
are compared with Fred's to find a difference. such as the letter "d" in
the third position of the name.* This Jifference is then used as the
Justification for generating @ new ~vmbol representing Fido. and for
rejecting Fred as the object to be retrieved. [f there is more than one

difference. one is picked indifferently.

By thus loosening the prohibition against examining perceptual
knowledge during result generation. discriminating conditions are added to
retrieval chunks which control when the acquired knowledge is retrieved.
Schematically. the production resulting from this process looks like the

following.

Retrieved(g35) A = Rejected(g35) A letter3(g35.)
A Perceived(p) A letter3(p. d) --> Reject(g33) A Retrieve(g37) (1)

This production says that if there is a retrieved. but not vet rejected,
object with svymbol g35 and an "e" as its third letter. and the perceived

object’s third letter is "d", then reject the retrieved object and create a

¥l the current implementation. discrimination is always based on features of object
names. rather than on other facts known about the object.

Towards the Knowiedge Level in Soar Page 56

new symbol (g37) for the perceived object. Each such retrieval production
forms one link in the discrimination network that is constructed as new
objects are perceived. This discrimination network supports k*-
retrievability — that is. retrievability by a combination of production
firings within a single elaboration phase — rather than the k-retrievability

that is possible for knowledge stored with no context.

Consider what happens when the following three facts are learned in

sequence. ignoring for now all of the learning except for the creation of the

discrimination network.

Isa(Fred. Cat)
Isa(Fido, Dog)
Isa(Carl, Dog)

First, Fred is processed. Because no object has heen learned previously,
no discrimination is necessary, and the only action to be taken is the
creation of a new symbol for Fred. This results in the acquisition of a

production which generates the svmbol for Fred if no object has already

been retrieved.
- Retrieved() -- > Retrieve(g35) (2)

Second, Cat is processed. Given the features of Cat. the symbol for Fred
(g35) is retrieved by production 2. As described below, the information
about Fred is cued off of Fred's symbol, so the retrieval of g35 leads to
the retrieval of what is known about Fred. Once this knowledge is
retrieved, Cat is discriminated from Fred. The system chooses

indifferently one of the discriininating le ters of the objects’ names — in

this case the second letter — yielding the following production.

Towards the Knowiedge Level tn ~oar Page 57

Retrieved(g35) A - Rejected(g35) A letter2(g35, r)
A Perceived(p) A letter2(p. a) --> Rejectig35) & Rerrieveradti 13

Third. Fido is processed. Fred is retrieved and diseriminated from Fideo
by the third letter. vielding production 1. above. Fourth, Dog i~
processed. Once again. Fred is retrieved, and the discrimination i< again

based on the third letter, yielding the following production.
Retrieved(g35) A = Rejected(g35) A letter3(g35. e)
A Perceived(p) A letter3(p. g) --> Reject(g35) A Retrieveig38) (4)

Fifth, Carl is processed. This time Fred is retrieved and then immediately
rejected by production 3. which also retrieves Cat. Carl is then
discriminated from Cat by the rthird letter. vielding the following

production.

Retrieved(g36) A - Rejerted(g36) A letter3(g35. t)
" A Perceived(p) A letter3(p. r) --> Reject(g36) A Retrieve(g39) (5)

Sixth, Dog is processed. Fred is retrieved. and then immediately rejected
by production 4. which also retrieves the svmbol fr Dog. Because there is
no mismatch between the perceived and retrieved objects, no
discrimination is necessarv. no new svmbol is generated. and no new
production is created. At this point the discrimination network has the

shape shown in Figure 5-1.

Given a partial specification of an object name. the svmbol for the
object whose name matches most closely — according to the structure of
the discrimination network — is retrieved. The knowledge associated with

the object is acquired with a retrieval context consisting of the object’s

symbol. As with episodic knowledge. this occurs by first acquiring a

Towards the Knowledge Level in Soar . Page 3%

FRED

CAT FIDO DOG

3/r

CARL

Figure 5-1: Discrinination network acquired from sequence of facts.
familiarity chunk for the new knowledge. and then acquiring a retrieval

chunk which depends on the object’s symbol.

Unfortunately, this approach depends on having all of the knowledge
about the object available at once. which raises the second issue: how to
incrementally acquire knowledge about objects. [f the familiarity chunk
must recognize the entire object. as it does in the previously published
approaches, no learning can occur about an object until all of the
knowledge about it is available. Conceptually. the solution to this
problem is straightforward. Data chunking is applied to each fragment of
an object individually. The processes of familiarization and generation are
performed independently for each letter of the object's name. and for each

fact about the object. As an example, the individual familiarity and

retrieval productions for the first letter of Fred's name look like the

Towaras the Knowledge Leve| in ~oar Page 59

following.
letterl(g33. f) --> Familiariletterl(g33, fi Ty
Retrievedig3s) A = Rejectedigsdi -- > tetteritgss. 1) (v

The implementation of rthis ~olution allows new facts to be acquired
about known objects. for example, that ColorFido. Red). However. what
is given up in going with this solution is the ability to use familiarity
chunks to directly perform recognition tasks. Object recognition must
now be based on multiple productions. The obvious way to do this is to
sort the object through the diserimination network. If the new object is
the same as the one stored in rhe node at which discrimination ends, then

it is recognized.

The third issue is how references to learned objects should be stored in
retrieval chunks. For primitive objects. such as the letters, the answer is
simple. The value is stored directly in the actions of the retrievai chunk.
as shown in production 7. However, for values that are objects. the
situation is more complicated and leads to - sequenced pair of
discriminations. similar to the approach taken by EPAM (Feigenbaum &

Simon. 1984).

Suppose the system has already learned about the object bej. a nonsense
trigram. and that the retrieval cue associated with bej is its first letter (b).
Then suppose that the system is presented with a paired associate (a

stimulus-response pair) in which bej is the response, for example

‘Towards the Knowledge Level in oar Page 60

Response(gaf. bej). This pair would be represented as follows.

(object s “letterl s1 “letter2 s "letter3 s3 “response r)
(letter s1 "name g)

(letter s2 "name a)

(letter 33 “name f)

(object r “letterl r1 “letter2 r2 “letterd r3)

(letter 1 "name b)

(letter 72 "name e)

(letter r3 “name j)

If g41 is the symbol for gaf and g42 is the symbol for bej, the obvious
retrieval production to create for this pair (ignoring for now the retrieval

productions for the object’s names) is the following.
Retrieved(g41) A ~ Rejected(g41) --> response(g4l. g42) (8)

However, the rule that is actually created will have an additional

condition which tests bej's retrieval cue (b).

Retrieved(g41) A — Rejected(g41) A Letterl(g42. b)
--> response(g4l. g42) (9)

This happens because the retrieval cue is examined in order to retrieve g42
from the discrimination network. Therefore. the appearance of g42 in the
chunk’s actions leads to the cue appearing in the chunk's conditions.
Such a retrieval production cannot support performance in paired-
associate tasks, where after studying a list of stimulus-response pairs. the

subject must generate responses when given just the corresponding stimuli.

One solution to this problem is to include a (partial) description of the
value object in the retrieval production rather than the object itself. If

the description is created anew, by data chunking. from the information

provided in the paired associate, no additional retrieval cues get

Towards the Knowledge Levei 1n Soar . Page 61

;
incorporated. With rhis change. the following chunk is learned.
Retrieved(g4l) A - Rejected(g41) --> response(g4l. lettert(-, Ly 1 10)

Given such a chunk for <et f chunxsy the paired associate rask un he
performed by using the ~timulus features to retrieve its ~symbol 1z4l),
usirg the stimulus svmbol to retrieve 1 (possibly partial) description of the
response (letterl(-. b)). using the description of the response to retrieve the
response symbol (g42). and then “ising the response svmbol to retrieve the

information abont the response (hej).

Using this stratezy the 1ask now requires two independent retrievals
from the discrimination network — one to retrieve the stimulus svmbol
and one to retrieve the response symbol. This is similar to the double
discrimination performed by EPAM during paired associate tasks
(Feigenbaum & Simon. 1984). However, it occurs in Soar not because of a
need to match the data, but as a means of enabling responses to he

retrieved from stimuli in the absence of any additional response ctes,

5.6. Summary

The representation, storage and use of declarat;ve knowledge are
relatively straightforward in Soar. The architectyre provides some
support for these capabilities through the primitive attribute-value
representation. the ability to store declarative structures in productions.
and the ability to examine declarative structures in working memory. The

architecture does not enforce a fixed semantics for declarative knowledge.

nor does it provide default inference mechanisms that automatically

Towards the Knowlsdge Level in Soar Page 2

generate structures representing knowledge that is implied by its existing
structures. Both of these. if part of the architecture. would imply
excessive rigidity in how the svstem could behave. To the extent they :re

needed. provision should be made by adding knowledge and problem

spaces on top of the fixed architecture.

The acquisition and retrieval of declarative knowledge is considerably
less straightforward. Chunking is provided as a means for acquiring

declarative knowledge. Lut the problem solver must be put through a

number of contortions for the system to acquire the approriiate chunks

from externally provided knowledge. In addition to the constraint
imposea by the data chunking problem. a related architectural constraint
restricts how known objects can be used in the acquisition of new
knowledge. The solution *o the problem posed by this constraint leads to
an approach which is increasingly like the discrimination network

structure of the EPAM mode!l of memory.

Retrieval of declarative knowledge is supported by production firing. but
considerabie additional complexity arises from the need to constrain
retrieval to what might be relevant. The discrimination network we have
employed provides one approach to this. Thcugh the approach curreatly
seems somewhat ad hoc, the abstract characterization of the precess as

relating the new knowledge to existing knowledge, 'eads to the hope that

it will eventually be placed on a principle. footing.

“Vowards the knowledge Level 1 ~oar Page 63

Further work is clearly called for in developing and evaluating the
acquisition and retrieval mechanisms that have been proposed (aned

implemented).

8. Conclusions

Taking an architecture <eriouslv means living within its constraints and
using what support it provides. at least until it is clear that the
architecture must be modified. In rhis chapter v'e have taken a step
towards evaluating the level of ~upport and constraint which the Soar
architecture provides for rhe knowledge level. a concept that is closely
related to the idea of general intelligence. This helps us to understand the
extent to which the architecture's current levels of support and constraint
are adequate for achieving general ‘ntelligence. It also provides an
alternat. e way of viewing Soar in which its architectural mechanisms are
subjugated to their role in supporting knowiedge. This complements other
efforts that view Soar as a set of mechanisms (Laird. Newell. &
Rosenbloom. 1987). a hierarchy of meta-levels tRosenbloom, Laird. &
Newell. 1988b), a hierarchy of cognitive levels a1 different time scales
(Newell, 1989, Rosenbloom. Laird., Newell, & McCarl, 1989). a physical
symbol system (Newell. Rosenbloom & Laird. 1989). and a general goal-

oriented system (Rosenbloom. 1989).

Our particular focus in this step has been on how the Soar architecture

supports and constrains the representat’on, storage. retrieval. use. and

acquisition of three pervasive forms of knowledge: procedural. episodic,

Towards the Knowledge Level in Soar Page 64

and declarative. The analysis reveals that Soar adequately ~upports
procedural knowledge — to some extent it was designed for this — but
that there are still significant questions about episodic and declarative
knowledge. These questions arise primarily because of consequences of the
principle source of constraint in Soar, the fact that all learning occurs via
chunking. Chunking can support the acquisition of episodic and
declarative knowledge. but in so doing it imposes significant requirements
on how the problem solving underlying this acquisition proceeds. These
requirements amount to architecturally-derived hypoiheses about how
learning occurs. e have reported here some new results that elaborate
on these hypotheses in the acquisition of declarative knowledge, but
considerable future work is still called for in both the development and

testing of these hypotheses.

One obvious question at this point is why not just add new architectural
mechanisms that directly support the acquisition of episodic and
declarative knowledge? Assuming that appropriate mechanisms could be
developed. there are still at least two critical reasons not to rush into
adding them to the architecture, The first reason is that the integration
of new mechanisms into an existing architecture can have major
consequences. An integrated architecture is more than just a collection of

useful mechanisms. [t must be constructed so that its mechanisms

compose appropriately with each other. The number of potential

interactions that need to be worried about increases rapidly —

Towards the Knowledge Leve| in ~oar Page 65

exponentially. if there can he interactions among all possible ~ubsets —
with the number of mechanisms. Frequentlv. the addition of perfectyv
reasonable new mechanism will cause <trongly dvsfunctional behavior in
others of the existing mechanisms. Though there are times when an
architectural addition is absolutely required. and a research effort must be
engendered to get the interactions right (as recently oceurred for
perceptual-motor behavior in Soar (Wiesmever. 1988)). almost always a

conservative strategy is what is required,

The second reason is that rushing to add new mechanisms discourages
learning about the limits of the existing mechanisms, and their
combinations. This is essential to understanding the scope and limits of
the architecture. [t is also essential to discovering the deeper. nonobvious
consequences of the architecture. If we had jumped to add new learning
mechanisms to Soar, we would never have discovered how the current
mechanisms inherently imply a reconstructive learning strategv. The
discovery of such nonobvious consequences is some f the most interesting

research that can be done with architectures.

This being said. much additional work is still needed. One issue to be
addressed is the origins of the bootstrap knowledge that allows new
procedural. episodic, and declarative knowledge to be acquired. The
acquisition of perceived procedural knowledge requires the existence of an

interpreter for the knowledge. The acquisition of perceived episodic and

declarative knowledge requires a set of nre-existing primitive elements plus

Towards the Knowledge Level in Moar Page 66

the knowledge about how to familiarize. discriminate. and construct object
representations. It appears necessary to add some of this to the
architecture. such as the ability to generate a set of primitive elements.
Other parts may just be specific instances of more general capabilities.
which of course must themselves be either innate or learned. For example.
the interpreter for procedural knowledge may be just an instantiation of a
more general comprehension process. The same may also be true of the
discrimination and construction processes for declarative and episodic
knowledge. The current implementation does not quite look like this. and
architectural changes may be required before it does, but this is one

promising path to pursue.

Finally, a number of additional steps must still be taken before the
relationship of the Soar architecture to the knowledge level is completely
tied down. The most important inissing aspect is the relationship between
Soar's mechanisms and the principle of rationalitv. The key issue is how
its architectural mechanisms, such as its decision procedure and subgoal
generator, allow Soar to approximate rationality even under the
constraints of its being a physical system with time and space bounds.
We have commented briefly on how chunking increases Soar's ability to

bring knowledge to bear under real-time constraints, but much more is

left to be done.

Towards the Knowledge Level 1n ~oar Page 67

References

Anderson. J. R. (1983). A spreading-activation theory of memory.
Journal of Verbal Learning und Verbal Beharior. 22, 261-295.

Anderson. J. R. (1986). Knowledge compilation: The general learning
mechanism. In R. . Michalski. J. G. Carbonell. & T. M. Mitchell
(Eds.). Machine Learning: An Artificial Intelligence Approach.
Volume [I. Los Altos. CA: Morgan Kaufmann Publishers. Inc.

Bartlett. F. . (1932). Remcmnbering: A Study ‘n Experimental and
Noctal Psychology. Cambridge. Eng.: C'ambridge ("niversity Press.

Bell. C. G. & Newell. A. (1971). C'omputer Structures: Readings and
Eramples. New York: MeGraw-Hill.

Brachman. R. J. (1979). On the epistemological ~tatus of semantic nets.
Findler. N. V. (Ed.). Associative Networks. New York. Academic
Press.

Collins. A. M., & Loftus. E. F. (1975). A spreading-aciivation theory of
semantic processing. Psychological Review. 8., 107-498.

Feigenbaum. E. A.. & Simon, H. A. (1984). EPAM-like models of
recognition and learning. Cognitive Science. 8. 305-336.

Golding, A., Rosenbloom. P. S., & Laird. J. E. (1987). Learning general
search control from outside guidance. Proceedings of [JCAI-87.

Milan,

Kolodner. J. L. (1985). Memory for experience. In G. Bower (Ed.),

Towards the Knowledge Level in Soar ' Page 6%

/
Psychology of Learning and Motivation. Volume 19. New VYork.

NY: Academic Precs.

Laird. J. E. (1983). Universal <ubgoaling. Doctoral dissertation.
Carnegie-Mellon ['niversity. (Available in Laird. J. E.. Rosenbloom.
P. 5. & Newell. A. Universal Subgoaling and Chunking: The

- Automatic Generation and Learning of Goal Hierarchies. Hingham.

MA: Kluwer. 1986).

Laird. J. E. (1988). Recovery from incorrect knowledge in Soar.
Proceedings of 414/-88. st. Paul.

Laird, J. E., and Newell, A. (1983). A universal weak method: Summary
of results. Proceedings of JJC AI-83. Karlsruhe.

Laird. J. E., Swedlow. K. R.. Altmann. E.. Congdon. C. B.. & Wiesmeyer.
M. (1983). Soar U'ser's Manual: Version 4.5 .

Laird, J. E.. Newell. A.. & Rosenbloom, P. . (1987). Soar: An
architecture for general intelligence. Arti ficial Intelligence, .33, 1-64.

Laird, J. E., Yager, E. S., Tuck, C. M.. & Hucka. M. (1989). Learning in
tele-autonomous systems using Soar. Proceedings of the NASA
Con ference on Space Telerobotics. Pasadena. CA. In press.

Lewis, R. L., Newell, A.. & Polk. T. A. (1984). Toward a Soar theory of
taking instructions for immediate reasoning tasks. Proceedings of

the 11th Annual Conference of the Cognitive Science Society. Ann

Arbor, MI, In press,

Towards the Knowledge Level in ~car Page 69

Neisser, U. (1967). Cognitive Psychology. New York: Appleton-(“atiry-
Crofts.

Newell. A, (1981}, The knowiedge level. A/ \fagazine. 2. 1-20.

Newell. A, (1989). ['nified Theories of Cognition. Cambridee. \[A:
Harvard University Press. [n press.

Newell. A.. Rosenbloom. P. S.. & Laird. J. E. (1389). Svmbolic
architectures for cognition. In M. I. Posner (Ed.). Foundations of
Cognitive Science. Cambridge. MA: Bradford Books/MIT Press. [n
press.

Norman. D. A.. & Bobrow. D. G. (1979). Desecriptions: An intermediate
stage in rﬁemory retrieval. C'ognitire Psychology. 11, 107-123.

Polk. T. A. & Newell, A. (1988). Modeling human syllogistic reasoning in
Soar. Proceedings of the 10th Annual Conference of the Cognitive
Science Society. Montreal.

Polk. T. A.. Newell, A.. & Lewis. R. L. (1989). Toward a unified theory
of immediate reasoning in Soar. Proceedings of the 11th Annual
Conference of the Cognitive Science Society. Ann Arbor. ML In
press.

Rosenbloom. P. 8. (1988). Bevond generalization as search: Towards a
unified framework for the acquisition of new knowledge. G.

F. Delong (Ed.). Proceedings cf the A44[Sympostum on

Ezplanation-Based Learning. Stanford. CA: AAAL

Towards the Knowledge Level in Soar Page 70

Rosenbloom. P. S. (1989). A symbolic goal-oriented perspective on
connectionism and Soar. In R. Pfeifer. Z. ~Schreter.
F. Fogelman-Soulie, & L. Steels (Eds.). Connectionism in
Perspective. Amsterdam: Elsevier. In press.

Rosenbloom. P. S.. Laird, J. E.. & Newell. A. (1987). Knowledge level
learning in Soar. Proceedings of A4A[-87. Seattle.

Rosenbloom. P. S., Laird. J. E.. & Newell. A. (1988). The chunking of
skill and knowledge. I[n B. A. G. Elsendoorn & H. Bouma (Eds.).
Working Models of Human Perception. London: Academic Press.

Rosenbloom, P. S.. Laird. J. E.. & Newell. A. (1988). Meta-levels in Soar.
In P. Maes & D. Nardi (Eds.). Meta-Level Architectures and
Reflection. Amsterdam: North Holland.

Rosenbloom. P. S.. Laird. J. E.. Newell, A.. & McCarl. R. (1989). A
preliminary analysis of the foundations of the Soar architecture as a
oasis for general intelligence. In D. Kirsh & €. Hewitt (Eds.).
Foundations of Artificial Intelligence. Cambridge. MA: MIT Press.
In press.

Schank, R. C. (1975). Conceptual Information Processing. Amsterdam:
North Holland.

Schank, R. and Ableson, R. (1977). Serpts. Plans. Goals and

Understanding. Hillsdale, NJ: Lawrence Erlbaum.

Steier, D. M., Laird, J. E., Newell. A.. Rosenbloom. P. §.. Flynn. R..

ty

©

Towards the Knowledge Level 17 soar . Page 71

Golding. A.. Polk. T. A.. Shivers. O. G.. Unruh. A.. & Yost, (. R.
(1987). Varieties of Learning in Soar: [987. P. Langiev (Ed.l.
Proceedings of the Fourth [nternational Workshop on Muachine
Learning. Los Altos. C'A. Morgan Kaufmann Publishers. Ine..

Tulving, E. (1983). Elements of Episodic Memory. New York: Oxford
University Press.

Watkins. M. J.. & Gardiner. J. M. (1979). An appreciation of generate-
recognize theory of recail. Journal of Verbal Learning und Verbal

Behavior. 8. 687-704.

?

~ e

Wiesmeyer. M. (1988). Soar /O Reference Manual. Version
Yost. G. R. (1987). TAQ: Soar Task Acquisition System. Version 2.

Yost. G. R.. & Newell. A. (1988). l.earning New Tasks in Soar.

Unpublished.

